Centrifugal pump simulation during waterhammer analysis

> Leonid Korelstein, Elena Yudovina, Vladimir Tarasevich

Leonid Korelstein PASS VP on R&D, PSRE Co

2020 November 30 - December 4 AT THE **EPICENTRE OF THE** DIGITAL TRANSFORMATION **OF INDUSTRY 36th INTERNATIONAL CAE CONFERENCE AND EXHIBITION**

Where we have met dynamic pump simulation?

- PASS/HYDROSYSTEM software
 - Surge add-on module

PASS/Hydrosystem | Experience and popularity

- Part of PASS product family
- First introduced in 1977
- Blessed by piping hydraulic world-known "guru" Idelchik
- Used by more than 600 companies worldwide
- Ideal tool for "day-to-day" operations in designing of any piping systems

Input data list Heat and hydraulic calculation Control/Target Parameters Waterhammer Results Calculation Log

PASS/Hydrosystem | Calculation capabilities

- Heat and hydraulic calculation of steady-state flow for:
 - Liquids
 - Real gases
 - Gas-liquid mixtures
 - Gas-liquid-liquid mixtures
 - Liquid-solid mixtures (a.k.a. 'slurry' flow)
- Surge analysis of transient liquid flow waterhammer calculation
- Unbalanced forces calculation and transfer to PASS/START-PROF and other piping stress analysis software
- Suitable for piping systems of any complexity

PASS/Hydrosystem | Modules and features

What type of pumps we are talking about?

- Centrifugal (or more general, rotodynamic) pump
- + Induction (or asynchronous) motor

What transient operations we need to simulate?

- Pump start-up (pump switched off -> operating at duty point)
 - From stopped pump (discharge valve closed) or from flow through non-operating pump
- Pump shut down (operating at duty point >switched off)
- Pump is operating, transient from one duty point to another (pump is switched on, event is in piping system)
- Transient in non-operating opened pump (pump is switched off, event is in piping system)

Transient vs steady state modeling for pumps

- Curves from Manufacturer for steadystate operation
 - H(Q), P(Q) or Efficiency(Q), NPSHr(Q) for some nominal n (speed of rotation)
 - Limited zone of operation parameters
- In transient mode pump can go through unusual regimes (4 quadrants) with arbitrary Q and n !

Reverse Turbine

Zone B. Energy Dissipation

Zone D. Energy Dissipation

Zone C.

Reverse Rotation Pumping Radial-Flow Machine

Zone F. Energy Dissipation

Zone E. Reverse Rotation Pumping Mixed-or Axial-Flow Machine

Mathematical model of the pump

Equation of Torque balance

•
$$2\pi J \frac{dn}{dt} = T_{motor}(n) - T_{pump}(Q, n)$$

•
$$J = J_{rotor} + J_{impeller} + J_{fluid}$$

 Boundary conditions on pump for inlet and discharge piping (analysis by characteristic method)

•
$$H_{outlet} - H_{inlet} = H(Q, n)$$

• How to calculate $T_{motor}(n)$, $T_{pump}(Q, n)$, H(Q, n)

Mathematical model of asynchronious motor

Slip $s = \frac{n_s - n}{n_s}$

•
$$T_{motor}(n) = \frac{2T_{cr}}{\frac{s}{s_{cr}} + \frac{s_{cr}}{s}}$$

- For specific motor manufacturer usually gives

 - Stator magnetic field rotation $n_s = \frac{2f}{p}$, $f = \frac{p}{p}$,
 - T_{cr} , n_{cr} (critical parameters)
 - T_{nom} , n_{nom} (nominal parameters)
 - Jrotor

General description of pump by Suter curves

- To calculate $T_{pump}(Q, n)$, H(Q, n) for turbulent quadratic flow, let's use affinity laws: H and $T \sim Q^2$ and n^2
- Defining dimensionless Suter curves as

•
$$\theta = \tan^{-1}\left(\frac{n}{n_{nom}}\frac{Q_{nom}}{Q}\right)$$

• $W_H(\theta) = \operatorname{sign}(H)\sqrt{\frac{|H|/H_{nom}}{(Q/Q_{nom})^2 + (n/n_{nom})^2}}$
• $W_T(\theta) = \operatorname{sign}(T)\sqrt{\frac{|T|/T_{nom}}{(Q/Q_{nom})^2 + (n/n_{nom})^2}}$
• Where Q_{nom} , n_{nom} , H_{nom} , T_{nom} - values in pump B.E.P.

Where to find Suter curves?

- Using Suter curves we can calculate $T_{pump}(Q, n), H(Q, n)$
- But pump manufacturers don't want to provide them...
- But there is some data for specific pumps!
- So we can try to use Suter curves for similar pump (or interpolate between several)
- How to define if pump is "similar"? Usually by the value of "Specific speed": $N_s = \frac{n_{nom}Q_{nom}}{H_{nom}^{0.75}}$

Suter curves on Donsky's data

How to merge Suter curves with usual pump curve?

- For pump transient simulation we use Suter curves
- For pump steady state simulation we use "traditional" pump curves from manufacturer
- But they have to coincide with each other in corresponding region of θ values, otherwise simulation can give non-adequate results!
- We should correct general $W_H(\theta)$ for specific pump using H(Q) curve from pump manufacturer!
- But... there is one important aspect to take into account!

"Floating" n and how to count it

- n is not equal to n_{nom} all over the manufacture H(Q) curve
 - It is slightly "floating" between n_{cr} and n_s!
 - Do manufactures really recalculate H(Q) to n_{nom} to take this into account? Most likely no we always use H(Q) in steady state analysis without any correction
 - How to count it?

• Get real value of n (for fixed value of Q or θ) from equation

• $T_{motor}(n) = W_T^2(\theta) [(Q/Q_{nom})^2 + (n/n_{nom})^2]T_{nom}$

• Then get corrected value of $W_H(\theta)$ using this value of n

Dimensionless Torque Equation

Equation

•
$$2\pi J \frac{dn}{dt} = T_{motor}(n) - T_{pump}(Q, n)$$

Can be put in dimensionless form

•
$$T_r \frac{d\beta}{dt} = \frac{1}{T_{nom}} \left[T_{motor}(\beta) - T_{pump}(q,\beta) \right]$$

•
$$\beta = n/n_{nom}, q = Q/Q_{nom}$$

• $T_r = 2\pi J n_{nom} / T_{nom} > 2\pi J_{motor} n_{nom} / T_{nom}$ is time characterizing pump transient behavior (usually from 0.05 to 5 s)

Pump start-up and shut down – rule of thumb

- If $T_r \gg$ time of wave travel via piping (2L/c), dynamic effects of pump transient operation are not significant
- Otherwise they should be analyzed!

Example – pump shut down

- Discharge piping length 600 m. T_r 0.2 s and 2 s.
- Points: 1 pump inlet, 2 outlet, 3 middle of discharge piping

The same example – pump start-up

INTERNATIONAL CAE CONFERENCE AND EXHIBITION | www.caeconference.com

Questions for further investigation

- More data for Suter curves are needed!
- Other parameters (besides N_s) for pump description
- How to deal with high viscosity fluid (when flow is not quadratic or even laminar)? Could HI viscosity corrections be used?
- How to deal with pump transient flow for settling slurries?
- How to deal with cavitation in the pump in transient operation? THANK YOU FOR YOU ATTENTION! Please visit PASS booth!